Появление нового варианта коронавируса вызвало новый интерес к части вируса, известной как белок спайков. Новый вариант несет в себе несколько необычных изменений в белке шипа по сравнению с другими близкородственными вариантами – и это одна из причин, почему он вызывает большее беспокойство, чем другие, безвредные изменения вируса. мы наблюдали ранее. Новые мутации могут изменить биохимию спайка и повлиять на степень передачи вируса.
Спайковый белок также является основой современных вакцин против COVID-19, которые стремятся вызвать иммунный ответ против него. Но что такое протеин-шип и почему он так важен?
Захватчики клеток
В мире паразитов многие бактериальные или грибковые патогены могут выжить сами по себе без инфицированной клетки-хозяина . Но вирусы не могут. Вместо этого они должны попасть внутрь клеток для репликации, где они используют собственный биохимический механизм клетки для создания новых вирусных частиц и распространения на другие клетки или людей.
Наши клетки эволюционировали, чтобы отражать такие вторжения. Одной из основных защит клеточной жизни от захватчиков является ее внешнее покрытие, которое состоит из жирового слоя, содержащего все ферменты, белки и ДНК, составляющие клетку. Из-за биохимической природы жиров внешняя поверхность имеет отрицательный заряд и обладает отталкивающими свойствами. Вирусы должны преодолеть этот барьер, чтобы получить доступ к клетке.
Как и клеточная жизнь, коронавирусы окружены жировой оболочкой, известной как оболочка. Чтобы проникнуть внутрь клетки, вирусы в оболочке используют белки (или гликопротеины, поскольку они часто покрыты скользкими молекулами сахара), чтобы соединить свою собственную мембрану с мембраной клетки и захватить клетку.
Спайковый белок коронавирусов – один из таких вирусных гликопротеинов. У вирусов Эбола один, у вируса гриппа – два, а у вируса простого герпеса – пять.
Архитектура шипа
Белок-шип состоит из линейной цепи из 1273 аминокислот, аккуратно свернутой в структуру, которая усеяна до 23 молекулами сахара. Белки-шипы любят слипаться, и три отдельные молекулы-шипы связываются друг с другом, образуя функциональную «тримерную» единицу.
Спайк можно подразделить на отдельные функциональные единицы, известные как домены, которые выполняют различные биохимические функции белка , такие как связывание с клеткой-мишенью, слияние с мембраной и позволяет спайку сесть на вирусной оболочке.
Белок-спайк SARS-CoV-2 застревает на примерно сферической вирусной частице, внедряется в оболочку и выступает в космос, готовый цепляться за ничего не подозревающие клетки. По оценкам, на один вирус приходится примерно 26 тримеров шипов.
Одна из этих функциональных единиц связывается с белком на поверхности наших клеток, называемым ACE2, запуская захват вирусной частицы и, в конечном итоге, слияние мембран. Спайк также участвует в других процессах, таких как сборка, структурная стабильность и уклонение от иммунитета.
Вакцина против шипового белка
Учитывая, насколько важен для вируса спайковый белок, многие противовирусные вакцины или лекарства нацелены на вирусные гликопротеины.
От SARS-CoV-2 вакцины, производимые Pfizer / BioNTech и Moderna, дают нашей иммунной системе инструкции по созданию нашей собственной версии белка-шипа, что происходит вскоре после иммунизации. Производство спайка внутри наших клеток запускает процесс выработки защитных антител и Т-клеток.
Одна из наиболее тревожных особенностей спайкового белка SARS-CoV-2 – это то, как он перемещается или изменяется с течением времени в процессе эволюции вируса. Закодированный в вирусном геноме белок может мутировать и изменять свои биохимические свойства по мере развития вируса.
Большинство мутаций не принесут пользы и либо остановят работу спайкового белка, либо не повлияют на его функцию. Но некоторые могут вызвать изменения, которые дадут новой версии вируса избирательное преимущество, сделав его более передаваемым или заразным.
Один из способов, которым это могло произойти, – это мутация части белка-шипа, которая предотвращает связывание с ним защитных антител. Другой способ – сделать шипы более «липкими» для наших клеток.
Вот почему новые мутации, которые меняют функции спайков, вызывают особую озабоченность – они могут повлиять на то, как мы контролируем распространение SARS-CoV-2. Новые варианты, обнаруженные в Великобритании и других странах, имеют мутации в спайке и в частях белка, участвующих в проникновении внутрь ваших клеток.
В лаборатории необходимо будет провести эксперименты, чтобы выяснить, значительно ли – и как – эти мутации меняют спайк, и остаются ли эффективными наши текущие меры контроля.