Четверг, 21 сентября, 2023
Новости биотехнологий
No Result
View All Result
No Result
View All Result
Новости биотехнологий
No Result
View All Result
Home Биоинформатика

Математическая модель для обнаружения мутаций в генах

10.03.2019
Биоинформатика
0
математическая модель мутаций в генах
23
VIEWS
Share on FacebookShare on Twitter

Российские ученые разработали математическую модель, которая поможет быстро и эффективно находить мутации в индивидуальных геномах при анализе большого количества образцов. Ее можно применять как в медицине, чтобы выявлять генные мутации, вызывающие предрасположенность к различным заболеваниям, так и в других областях, например в сельском хозяйстве для селекционной работы. Исследование проходило в рамках проекта, поддержанного Президентской программой исследовательских проектов Российского научного фонда.

[penci_related_posts title=»Вам также может быть интересно» number=»4″ style=»list» align=»none» displayby=»cat» orderby=»random»]

У каждого живого существа есть наследственный материал, который необходим для построения, развития и жизни организма. Эта информация называется геномом, и у большинства организмов она представлена в виде молекул ДНК, состоящих из «букв» — нуклеотидов. Участки ДНК, называемые генами, отвечают за наследственные признаки.

РЕЗУЛЬТАТЫ ОПУБЛИКОВАНЫ в журнале BMC Bioinformatics

Изменения в последовательности некоторых генов могут приводить к развитию разных болезней, например аневризмы аорты, когда участки сосуда расширяются и могут разорваться. Основная задача авторов работы заключалась в поиске генов, мутации в которых достоверно повышают риск этого заболевания. Сейчас медики предполагают, что к аневризме аорты могут приводить замены даже одного нуклеотида в последовательностях, обеспечивающих развитие и работу сердечно-сосудистой системы. Такие отличия называются однонуклеотидными полиморфизмами.

В работе авторов важную роль играет биоинформатика, в том числе анализ «больших данных», которые ученые получают с помощью секвенирования нового поколения. Этот метод быстро предоставляет информацию о последовательности сразу нескольких участков генома, по сути, «читает» наши гены. Однако золотой стандарт этого направления — секвенирование по технологии Illumina — дорог, времязатратен и имеет технические ограничения. Чтобы ускорить и удешевить этот процесс, ученые используют метод пулирования образцов — их объединения и общего анализа.

Для примера усовершенствованных способов пулирования можно представить шахматную доску, где ученые размещают все образцы на клетках доски 8 на 8 и объединяют каждую из вертикальных линии от A до H в одну, и каждую из горизонтальных от 1 до 8 тоже в одну. Таким образом можно «прочитать» 16 образцов вместо 64 и выяснить, что мутация присутствует, например, в линии E и линии 5. Значит, мутацию несет образец на поле E5.

Иногда мутации присутствуют сразу в двух клетках, и тогда нельзя достоверно с первого раза понять, где именно они находятся. Так, например, анализ выявил отклонения в клетках С и Е по вертикали и 3 и 5 по горизонтали. Тогда ученые не могут точно сказать, где именно «поселились» мутации: в С3 и E5 или в С5 и E3. Для этого исследователям приходится «читать» конкретный участок еще раз, но уже только для четырех образцов, что проще и дешевле, чем полное «прочтение» генома.

«Мы разработали математическую модель s-dePooler, которая воспроизводит смешивание образцов и последующее секвенирование. На ее основе мы составили алгоритм, выявляющий возможных носителей мутации. Он подходит для анализа любых схем смешивания», — рассказал один из авторов статьи Александр Жернаков, младший научный сотрудник Национального медицинского исследовательского центра имени В. А. Алмазова.

Ученые протестировали разработанный метод на синтетическом наборе данных проекта «1000 геномов» и успешно определили 97% мутаций, присутствующих менее чем у 10% носителей.

Несмотря на широкое применение модели s-dePooler, первая ее задача — это поиск связи между аневризмой аорты и генами, которые отвечают за работу сердечно-сосудистой системы. Авторы уже обследовали пациентов с диагностированным аневризмом на присутствие отличий в гене ACTA2, который кодирует один из белков в гладкомышечных клетках аорты, и нашли несколько мутаций у их носителей.

«Кроме того, с помощью нашей модели можно изучать симбиозы растений с почвенными микроорганизмами. Мы будем анализировать популяции модифицированного гороха для поиска и выявления мутантов по симбиотическим генам, ответственным за формирование взаимовыгодных отношений. Воздействуя на них, можно направленно улучшить генетический аппарат растений: например, сделать их симбиоз с микроорганизмами эффективнее и использовать благодаря этому меньше химических удобрений», — отметил один из разработчиков s-dePooler Владимир Жуков, кандидат биологических наук, сотрудник Всероссийского научно-исследовательского института сельскохозяйственной микробиологии.

Работа проходила в сотрудничестве с учеными из ВНИИ сельскохозяйственной микробиологии.

Предыдущий

Биоактивность имплантатов

Следующий

INOFEA выделяет Perseo Pharma для дальнейшей разработки терапевтических ферментов

  • Конфиденциальность
Создание сайта Get-Going.ru

© 2021-2023 Новости биотехнологий

  • БИОИНФОРМАТИКА
  • БИОБЕЗОПАСТНОСТЬ
  • НАНОБИОТЕХНОЛОГИИ
  • СИНТЕТИЧЕСКАЯ БИОЛОГИЯ
  • ОТРАСЛЕВЫЕ БИОТЕХНОЛОГИИ
  • ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
  • СТАРТАПЫ
  • COVID-19

© 2021-2023 Новости биотехнологий

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Просматривая этот сайт, вы соглашаетесь с нашей Политикой конфиденциальности